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1. INTRODUCTION

Traditional Music Source Separation (MSS) systems operate under
the assumption that musical mixtures are linear combinations of un-
processed instrument stems [1]. However, this model inadequately
represents real-world audio production pipelines where recordings
undergo extensive signal processing including equalization, dynamic
range compression, reverberation, harmonic distortion, mastering,
lossy transmission, and storage degradation [2]. While MSS systems
can separate individual sources, their subtractive nature prohibits re-
covery of original signals before these transformations are applied.

The Music Source Restoration (MSR) Challenge addresses this
limitation by requiring systems to recover original, unprocessed
source signals from fully mixed and mastered audio. This neces-
sitates a fundamental shift from subtractive separation methods to
generative restoration approaches. The challenge connects aca-
demic research with practical audio engineering needs, including
archival preservation, professional remixing, recovery of historical
recordings, and enhancement of live performances affected by venue
acoustics.

This paper presents the comprehensive evaluation protocol for
the inaugural MSR Challenge, detailing our evaluation methodol-
ogy, datasets, metrics, and ranking procedures. We establish two dis-
tinct evaluation paths: an objective path with two tracks optimized
for signal reconstruction and semantic alignment, and a subjective
path evaluating perceptual quality through professional assessment
of real-world degradation scenarios.

2. CHALLENGE OVERVIEW

The MSR Challenge evaluates systems on their ability to restore
eight target instrument stems: vocals, guitars, keyboards, bass, syn-
thesizers, drums, percussion, and orchestral elements. The com-
monly found “others” stem in MSS is intentionally excluded due
to its inherent variability and lack of clear definition.

2.1. Timeline

» Registration Opens: August 15th, 2025

¢ Validation Set Release: September 1st, 2025

* Baseline System Release: September 15th, 2025

¢ Test Set Release: November 25th, 2025

¢ Final Submission Deadline: November 27th, 2025
* Data Submission Deadline: December 3th, 2025

* Results Announcement: December 4th, 2025

* 2-page Paper Due: December 7th, 2025

2.2. Data Policy

Participants may use any open-source academic datasets for train-
ing, including multitrack music datasets (MUSDB18-HQ [3], Moi-
sesDB [4], MedleyDB [S], RawStems [2]), single-instrument record-
ings (URMP [6]], MAESTRO [7]), and noise datasets (WHAM! [8]],
Freesound [9]). Participants may also create synthetic training data.
All newly created datasets and generation pipelines must be submit-
ted and shared by November 26, 2025. This deadline, occurring after
the final submission deadline, allows participants to maintain data
advantages during the competition while ensuring eventual sharing
for the benefit of the research community.

Important Note on RawStems: While RawStems is available
as a training resource, participants should be aware that it contains
significant data quality issues, including incomplete time alignment
and instrument leakage. RawStems is best used as a starting point,
and participants are strongly encouraged to source additional clean
stems for each instrument category to achieve competitive perfor-
mance.

3. DATASET

3.1. Validation Set: MSRBench

The validation set consists of MSRBench, a professionally curated
dataset specifically developed for benchmarking MSR systems.
MSRBench contains 250 10-second audio clips with corresponding
individual stem pairs for each of the eight target instruments with
12 additional mixture degradation types. All audio is provided in
stereo at 48 kHz sampling rate. The dataset was created using pro-
fessional mixing techniques, and is publicly available at https:
//huggingface.co/datasets/yongyizang/MSRBench
and may be used entirely or partially for system development. Partic-
ipants are encouraged to report findings on MSRBench in academic
publications regardless of challenge participation.

3.2. Non-Blind Test Set

The non-blind test set contains 1000 10-second stereo clips at 48
kHz, extracted from professionally mixed and mastered commer-
cial songs with previously unreleased stems. The distribution of this
test set is similar to that of the validation set (MSRBench), ensur-
ing consistency in evaluation conditions. Ground-truth unprocessed
stems are available, allowing calculation of intrusive objective met-
rics. These clips are custom mixed and undergo a range of simulated
audio degradations including:

* Equalization and frequency shaping
* Dynamic range compression and limiting
 Spatial processing (reverb, delay, stereo widening)

¢ Harmonic distortion and saturation
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* Mastering chain effects

¢ Lossy encoding artifacts

3.3. Blind Test Set

The blind test set contains 500 10-second stereo clips at 48 kHz rep-
resenting four real-world degradation scenarios where ground-truth
signals are unavailable:

1. Historical Recordings (125 clips): Digitized cylinder
recordings from the UCSD Cylinder Audio Archive, rep-
resenting storage degradation from early recording media.

2. Live Recordings (125 clips): Concert performances sourced
from YouTube, affected by venue acoustics, crowd noise, and
environmental degradation.

3. FM Radio Broadcast (125 clips): Songs recorded through
FM radio transmission, exhibiting analog transmission arti-
facts and degradation.

4. Lossy Streaming (125 clips): Music transmitted under low
bitrates and lossy codecs, representing digital transmission
degradation common in streaming services.

To ensure fair evaluation and prevent overfitting, participants re-
ceive the complete test set 48 hours before the submission deadline
for final inference and submission.

4. EVALUATION METRICS

4.1. Objective Metrics

4.1.1. Multi-Mel Spectrogram Signal-to-Noise Ratio (Multi-Mel-
SNR)

For the Signal Reconstruction track, we employ Multi-Mel-SNR,
which measures spectro-temporal reconstruction accuracy while
avoiding the phase oversensitivity inherent in complex spectrogram
or waveform metrics. This metric evaluates magnitude-only recon-
struction across multiple time-frequency resolutions.

Scale-invariant normalization. To isolate reconstruction qual-
ity from loudness differences, we first apply scale-invariant normal-
ization to the waveform domain. For each segment pair consisting
of reference stem s and predicted stem S, we compute the optimal
scaling factor:
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and obtain the scaled prediction § = «*S. This normalization fol-
lows the scale-invariant principle used in SI-SNR [10]], ensuring that
global amplitude differences do not affect the metric.

Multi-resolution mel spectrogram analysis. From the refer-
ence waveform s and scaled prediction S, we compute power mel
spectrograms (squared magnitude) using three configurations with
different time-frequency resolutions:

* Configuration A: 512-sample window, 256-sample hop, 80
mel bins

* Configuration B: 1024-sample window, 512-sample hop, 128
mel bins

* Configuration C: 2048-sample window, 1024-sample hop,
192 mel bins

All configurations use fmin = 0 Hz, fmax = 24 kHz, and are
computed via torchaudio.transforms.MelSpectrogram
with default settings.

SNR computation. For each configuration i € {A, B, C'}, let
M, and M; denote the reference and scaled prediction mel spectro-
grams. We compute:
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where the summation is over all time frames ¢ and mel frequency
bins f. The Multi-Mel-SNR for a single segment is:
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The final track score is the arithmetic mean of Multi-Mel-SNR
across all eight target stems and all test clips. Higher values indicate
better reconstruction quality.

4.1.2. Zimtohril

For the Generation Quality track, we employ Zimtohrli [11]], a re-
cently developed full-reference audio similarity metric is grounded
in psychoacoustic principles. Zimtohril combines a 128-bin gam-
matone filterbank that models cochlear frequency resolution with a
non-linear resonator model to imitate the human eardrum’s response.
The metric computes similarity by comparing perceptually-mapped
spectrograms using modified Dynamic Time Warping (DTW) and
Neurogram Similarity Index Measure (NSIM) algorithms enhanced
with non-linearities to better align with human perception. The Zim-
tohril implementation can be found at https://github.com/
google/zimtohrlil

For each separated stem, we compute Zimtohrli scores for all
test segments and report the mean score. Higher Zimtohrli scores
indicate better generation quality. The final track ranking is deter-
mined by the average Zimtohrli score across all eight target stems
and all test clips.

4.1.3. Fréchet Audio Distance with CLAP (FAD-CLAP)

For the Semantic Alignment track, we employ FAD-CLAP, which
computes Fréchet Audio Distance over CLAP (Contrastive Language-
Audio Pretraining) embeddings [12]. FAD-CLAP is calculated as:

FAD-CLAP = ||t — pig||* + Te(r + 5y — 2(2,59) %) (4)

where fi,, £, and p4, X4 are the mean and covariance of CLAP
embeddings for reference and generated audio, respectively. Lower
FAD-CLAP values indicate better semantic similarity and structural
preservation.

All objective metrics are calculated on 10-second non-overlapping
windows, with final rankings based on mean scores across all win-
dows.

4.2. Subjective Metrics

Professional mixing engineers and music producers assess restora-
tion quality through blind and non-blind listening tests. Each 10-
second segment receives ratings on a 5-point scale (1 = very poor, 5
= excellent) across three dimensions:
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* MOS-Separation: Evaluates whether the output contains
only the complete target instrument with no interference
from other sources.

* MOS-Restoration: Assesses how well the target instrument
has been restored to its original, undegraded state, even if
other elements are present or the target is incomplete.

* MOS-Overall: Reflects overall perceptual quality and sim-
ilarity to ground truth, determining final system rankings in
the Perceptual Quality track.

MOS-Separation and MOS-Restoration provide analytical in-
sights, while MOS-Overall determines final rankings based on pro-
fessional audio standards. Individual rater scores will be released for
future research.

Development Recommendation: Participants are encouraged
to self-test their systems using audiobox-aesthetics as a partial sur-
rogate for human raters during development. While not a perfect
substitute for professional evaluation, this can provide useful guid-
ance on perceptual quality before final submission.

5. ZIMTOHRIL IMPLEMENTATION

While Zimtohril provides a Python wrapper, its documentation re-
quires clarification. The implementation can be achieved through
the following procedure. First, the repository is cloned from
https://github.com/google/zimtohrli, and the pack-
age is installed via pip install from within the cloned
directory.

A minimal implementation example is provided in Listing [T}
The metric requires both reference and degraded audio signals as
single-precision floating-point arrays. Audio files are loaded using
the soundfile library, and the Zimtohril distance is computed
through the Pyohrli class interface, which returns a perceptual
distance measure between the two signals. The following example
assumes both audio clips are mono, 48 kHz and equal in length.

Listing 1. Minimal Zimtohril usage example.
import numpy as np
import soundfile as sf
import pyohrli

ref_path = ”ground-truth.wav”
deg_path = ”estimated.wav”
ref, sr_ref = sf.read(ref_path)

deg, sr_deg sf.read(deg_path)

ref = np.asarray(ref,
deg = np.asarray(deg,

dtype=np.float32)
dtype=np. float32)

metric = pyohrli.Pyohrli ()

zimt_distance = metric.distance (ref, deg)

6. EVALUATION TRACKS AND RANKING

The challenge features two distinct evaluation paths: Objective
Evaluation (non-blind test set) and Subjective Evaluation (blind
test set). Within the objective path, we recognize two different
optimization strategies, resulting in three total leaderboards.

6.1. Objective Evaluation Path

The objective path uses the non-blind test set where ground-truth sig-
nals are available, allowing computation of intrusive metrics. This
path includes two tracks optimizing for different aspects of restora-
tion:

6.1.1. Track 1: Signal Reconstruction

This track emphasizes accurate recovery of original stem waveforms
with focus on spectro-temporal fidelity. To address the oversensi-
tivity of phase information in complex spectrogram metrics, we em-
ploy a Multi-Mel Spectrogram Signal-to-Noise Ratio (Multi-Mel-
SNR) metric that evaluates reconstruction quality across multiple
time-frequency resolutions. Systems are ranked exclusively by this
metric in Track 1.

6.1.2. Track 2: Generation Quality

This track evaluates the perceptual quality and naturalness of sepa-
rated stems using Zimtohril [11], a learning-based metric designed
to assess audio generation quality. This track rewards systems based
on perceptual quality, complementing the signal-level reconstruction
metric in Track 1.

6.1.3. Track 3: Semantic Alignment

This track prioritizes preservation of musical content and semantic
coherence using the Fréchet Audio Distance with CLAP embeddings
(FAD-CLAP). FAD-CLAP measures the distributional similarity be-
tween separated stems and reference stems in the CLAP semantic
embedding space, capturing high-level musical characteristics such
as timbre, instrumentation, and musical context.

Systems are ranked exclusively by FAD-CLAP performance, av-
eraged across all eight target stems and all test clips. Lower FAD-
CLAP scores indicate better semantic alignment. This track recog-
nizes systems that maintain musical meaning and structural coher-
ence, even when waveform-level precision differs from the refer-
ence.

6.1.4. Overall Ranking

To provide a comprehensive assessment, we compute an overall
ranking by taking the macro-average of each system’s rankings
across all three tracks. Specifically, if a system ranks r1, r2, and
rs in Tracks 1, 2, and 3 respectively, its overall ranking score is
(r1 4 r2 + r3)/3. Systems are then ordered by this overall ranking
score, with lower scores indicating better overall performance. This
approach ensures balanced consideration of signal reconstruction
fidelity, generation quality, and semantic alignment.

6.2. Subjective Evaluation Path

This track is based exclusively on subjective evaluations using the
blind test set. Professional audio engineers rate restoration quality
across all four real-world degradation scenarios (historical record-
ings, live performances, FM radio broadcast, and lossy streaming).

The final ranking for Track 3 is computed by equally weighting
all three Mean Opinion Scores:

* MOS-Separation (33.3% weight)
¢ MOS-Restoration (33.3% weight)
* MOS-Overall (33.3% weight)



Scores are averaged across all eight target stems, all four degra-
dation scenarios, and all test clips. This track reflects real-world
professional standards and end-user perceptual quality in challeng-
ing restoration scenarios.

6.3. Ranking Procedure

For each track, scores are computed separately for each of the eight
target stems. All scores are normalized to a 01 scale across all stem-
metric combinations to ensure fair comparison. Final track rankings
are determined by averaging the normalized scores across all stems.

This produces three distinct leaderboards: Track 1 (Signal Re-
construction), Track 2 (Semantic Alignment), and Track 3 (Percep-
tual Quality). Each leaderboard recognizes different strengths in
restoration systems. The top 5 participants in the combined rank-
ings of Tracks 1 and 2 (the objective evaluation path) will be invited
to submit a 2-page short paper detailing their methodology.

7. SUBMISSION GUIDELINES

7.1. Platform

Due to timeout issues with handling large audio objects, the testing
phase of the challenge will be based on Google Drive. Candidates
will receive a zip file for all mixtures for separation, and an example
submission zip file (as detailed in submission format section); can-
didates need to replace the dummy results in example zip file, and
upload the zip file to a publically accessible Google Drive link. Can-
didates can submit the google drive link for their submission through
a Google Form that’ll be available during the testing phase; the fi-
nal submission will be used to rate their system. Registration and
development phases are managed separately.

7.2. Submission Format

Each submission must be a zip file containing folders named by song
ID. Each folder must contain restored stems as separate FLAC files
named {stem_name}. flac, where stem names correspond to the
eight target instruments (vocals, guitars, keyboards, bass, synthesiz-
ers, drums, percussion, orchestral). All output files must be stereo at
48 kHz sampling rate with exactly 10 seconds duration.

An example submission structure will be provided alongside the
test set release to ensure proper formatting. Submissions that do not
conform to the required format will be rejected automatically.

7.3. Submission Limits

Participants can change the google drive link used for final submis-
sion during the final testing period at any time before the end of the
testing phase. Each submission must include results for both the
blind and non-blind test sets.

7.4. Reproducibility Requirements

All participants must open-source their training and evaluation code
to ensure reproducibility and advance the field. Final submissions
must include a README . md file containing:

* Brief system description and methodology overview
 Link to publicly accessible code repository

* Instructions for reproducing results

Participants who fail to provide accessible code by the submis-
sion deadline will be disqualified. This requirement ensures the chal-
lenge contributes lasting value to the research community.

8. BASELINE SYSTEMS

We provide complete training and evaluation code for two baseline
systems alongside the validation set release:

1. U-Net [13]: A multi-scale neural network operating on com-
plex spectrograms, originally designed for end-to-end audio
source separation. This baseline demonstrates a straightfor-
ward approach to the restoration task.

2. BSRNN [14]]: Band-Split RNN architecture for high-fidelity
enhancement, also operating in the complex spectrogram
domain. This baseline represents a more sophisticated
frequency-domain approach.

Both baselines are trained on the RawStems dataset using the
provided synthetic degradation pipeline. Participants may use
these baselines as starting points or comparison references for
their own system development. We provide example code for
training, inference and evaluation at https://github.com/
yongyizang/MSRKit, and pre-trained checkpoints at https:

//huggingface.co/yongyizang/MSRChallengeBaseline.
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